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DEPOSITION OF SMALL AEROSOL PARTICLES ON THE SURFACE OF MOVING 

EVAPORATING CRYSTALS 
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and Yu. I. Yalamov 

UDC 532.73:551.510 

The method of augmenting asymptotic expansions is used for the case of low diffusive 
Peclet numbers to determine the flow of aerosol particles to the surface of an evaporating 
(or growing) crystal. 

I. Formulation of the Problem. The theory of capture of small (moving in the free- 
molecular regime) aerosol particles by evaporating or condensing drops has by now been de- 
veloped in quite an amount of detail [I-3]. As concerns processes of the capture of aerosols 
particles by evaporating or growing crystals, the theory is considerably less well developed. 

A characteristic feature of particles of the solid phase (collectors) is their nonspher- 
ical form, which is considered in the present study. 

We will examine a large (Knudsen number Kn = 0) evaporating particle of a solid phase 
suspended in a vapor--gas mixture. The theoretical analysis will be made for the case when 
the Reynolds number and the diffusive and thermal Peclet numbers are small, so that the equa- 
tions of hydrodynamics and heat and mass transfer near the particle surface have the form 

v A v  = - - V p / p e ,  d i v v  ~ O, ATe,  i = O, Ac 1 = O, (1.1) 

where v, Pc, P, and Te are the velocity, density, pressure, and temperature of the mixture; 
ci = nl/no; no = nl + n2 (nl and n2 are the concentrations of the vapor and gas); ~ is the 
kinematic viscosity of the mixture; Ti is the particle temperature. 

System (1.1) must be solved with allowance for the following conditions on the boundary 
between the particle (collector) and the medium: 
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and far from the particle: 

.T~ = T~ --T.;  (1 .2 )  

~ = c ~ ( T . ) ;  (1 .3 )  

--• = --~iOTi/Ort --9evnL; (1.4) 
n~m 1 Oc 1 

n2v n + - - ~  D n - ~  = 0 ;  ( t . 5 )  

vT = 0 (I .6) 

V = u ~ ,  c 1 = C i ~  Te = T ~ :  ( 1 . 7 )  

In Eqs.  ( 1 . 2 ) - ( 1 . 6 ) ,  D12 i s  t h e  c o e f f i c i e n t  of  b i n a r y  d i f f u s i o n ;  L, h e a t  of  the  phase  t r a n s i -  
t i o n ;  mz, mass o f  a v a p o r  m o l e c u l e ;  • and • , t h e r m a l  e o n d u c t i v i t i e s  of  t h e  m i x t u r e  and 
p a r t i c l e ;  Vn and v z ,  normal  and t a n g e n t i a l  v e l o c i t y  c o m p o n e n t s ;  3 /3n ,  d i f f e r e n t i a t i o n  w i t h  
respect to a normal to the particle (crystal) surface. 

Equation (1.2) expresses the equality of the temperatures at the particle surface; Eq. 
(1.3) reflects the fact that the saturation vapor pressure at the particle surface is a func- 
tion of temperature; Eq. (1.4) is derived from the law of conservation of energy; Eq. (1.5) 
expresses the impermeability of the surface of the evaporating particle to the gas molecules; 
Eq. (1.6) reflects the absence of gas slip along the particle surface. 

The transport of small aerosol particles to the crystal (collector) surface is described 

by the convective diffusion equation 

D A N  = u v N ,  (I .8) 

where D is the coefficient of Brownian diffusion; N is the concentration of particles; u is 
the velocity of the particles, which at low Reynolds numbers is due to motion of the collec- 
tor and to Stefan flow caused by evaporation from the surface. It can be represented as 

u = v  +vT +vD +Vst ,  (1 .9)  

where v is the gasdynamic velocity obtained from the solution of the problem of flow about 
a nonevaporating crystal; v T = --fTVT is the rate of thermal phoresis; v D = --fDVCl is the rate 
of diffusive phoresis; Vst = --(n~ml/Peni)D12Vcl is the rate of Stefan flow. 

The expressions for the functions fT and fD are cumbersome and can be found in works on 
thermal and diffusive phoresis [4, 5]. Henceforth, to abbreviate notation we will use the 
new function fc, given by the relation fcVcl = fDVCz + fTVT + Vst. We can do this because 
there is a one-to-one correspondence between the temperature and concentration gradients 
during evaporation of a particle. 

We will change over to dimensionless variables in Eq. (1.8) 

=(N--N~)I (N~--N~) ,  r , = r / a ,  v , = v / u ~ ,  

where N a is the particle concentration at the surface (it is usually assumed that N a = 0); 
a is a characteristic dimension of the particle-collector. In this case Eq. (1.8) reduces 
to the form 

/~ a~ = Pev,V~, A~ + --ff Vc 1 

Pe = u~a/D, differentiation is done with respect to the dimensionless variables, and the 
function ~ satisfies the following boundary conditions: ~r+oo = O; ~ = 11r=r0 , where r0 is 
the radius-vector of the particle surface. 

Henceforth, we will assume that the Peclet number Pe ~ I, while Pel = fc/D is small: 

Pel = I. 

2. Calculation of the Flow of Aerosol Particles to the Surface. We will suppose that 
there is an orthogonal system of coordinates xi, xj, x k in which the particle surface is de- 
scribed by the equation xi = x0; in the same coordinate system the vapor concentration cl 
depends on the variable xi, so that the Laplace equation of system (~.I) reduces to the equa- 
tion 

~ [ 0  de1] 
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where ~(x i) is a function of the variable xi determined from the relation [6] 

~(x~, xi~)/O(x3 ---- Ibhk/h~, 

in which hi, hj, and h k are Lam~ coefficients. 

It should be noted that similar assumptions were used to construct a theory of diffu- 
sive charges of aerosol particles in [6]. 

We will use the method of augmenting asymptotic expansions to determine the concentra- 
tion of aerosol particles. This method was explained in [7] with reference to hydrodynamics 
problems and in [8, 9] in regard to problems of heat and mass transfer. 

We introduce external and internal expansions of the solution: 

X or ) 
~* = a(n)~ (n), lim O, 

n P e s o  O~(n~ 

~ , =  ~ . ,  l i m % + l = O .  
n ~ Pe-~0 COn 

The i n t e r n a l  e x p a n s i o n  6 ,  i s  v a l i d  f o r  the  i n t e r n a l  f l o w  zone r0 < r ,  < O(Pe -z )  , where r0  i s  
t he  r a d i u s - v e c t o r  o f  the  p a r t i c l e  s u r f a c e .  The e x t e r n a l  e x p a n s i o n  is  v a l i d  f o r  t he  r e m a i n i n g  
p a r t  of  t he  f l o w .  

To d e t e r m i n e  t he  te rms  of  t he  e x t e r n a l  e x p a n s i o n  we i n t r o d u c e  the  condensed  v a r i a b l e  
p = P e r ,  and the  v e l o c i t y  V(p) = v , ( r , ) .  H e n c e f o r t h  the  symbol * w i t h  t he  r a d i u s - v e c t o r  and 
velocity will be omitted. 

Since according to the above assumptions Pel -~ I and cl ~- B/r for the harmonic function 
c1(xi) as r + ~ (where r is the radius of a certain spherical coordinate system connected with 
the particle), then to within the terms O(Pe 2) the equation (1.9) takes the following form 
for 6" 

A~* = u ~*, 

i.e., it coincides with the external expansion of the heat- and mass-transfer equation ob- 
tained in [8, 9]. 

It was shown in [8, 9] that to within O(r -2) the velocity field away from a particle 
of arbitrary form is 

, v  = i - -  ~ + ~ -  r ( F r ) ,  

where i i s  a u n i t  v e c t o r  d e t e r m i n i n g  the  d i r e c t i o n  o f  t he  f l o w ;  F i s  a d i m e n s i o n l e s s  v e c t o r  
equa l  t o  the  r a t i o  of  the  r e s i s t a n c e  of  t he  g i v e n  p a r t i c l e  t o  the  S tokes  f o r c e  a s s o c i a t e d  wi th  
the  r e s i s t a n c e  of  a s o l i d  s p h e r i c a l  p a r t i c l e  of  r a d i u s  a .  

Le t  us p r o c e e d  to  the  c o n s t r u c t i o n  of the  s o l u t i o n .  

Ze ro th  A p p r o x i m a t i o n .  The z e r o t h  a p p r o x i m a t i o n  f o r  the  e x t e r n a l  e x p a n s i o n  i s  o b v i o u s :  
~(0) - 0, w h i l e  f o r  the  i n t e r n a l  e x p a n s i o n  wi th  c~0 = 1 we o b t a i n  t he  e q u a t i o n  

sc 
A~0 -~ - ~ -  VC1 = 0,, ( 2 .  1 ) 

the solution of which, with allowance for the assumptions made earlier regarding the form of 
the particle, has the form 

where A - -  t dcl-----const; b0 and I0 a r e  c o n s t a n t s  d e t e r m i n e d  f rom the  bounda ry  c o n d i t i o n s ;  
.. 0 ( x 3  dx~ 

meanwhi le ,  I0 d e t e r m i n e s  t h e  p a r t i c l e  f l o w  to  the  s u r f a c e  of  a s t a t i o n a r y  c o l l e c t o r  a c c u -  
r a t e l y  t o  w i t h i n  the  c o n s t a n t  f a c t o r .  E x p r e s s i o n s  f o r  t h e s e  c o n s t a n t s  a r e  e a s i l y  o b t a i n e d :  

t 

Ale 
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As r § ~, the function t0 has the form B/r. Thus, from the condition of augmentation of the 
expansions, ~(I) = Pc. 

First Approximation. The external expansion of the solution ~(i) satisfies the equation 

A~ ~(~} = i V ~ ~(~), 

the solution of which, meeting the augmentation conditions, has the form 

P 

where ~ = (iF); y is a constant determined from the augmentation conditions as p § 0. 

With allowance for the constancy of the total particle flow I to the surface and the 
augmentation conditions lim$(~ (~) , it is not hard to find that y =--I0/D. 

r - ~ o o  0 ~ 0  

Expansion of the function ~(1) in the internal variables with r § 0 leads to the follow- 
ing selection of the parameter of the expansion ~(1) and the augmentation condition: 

~(i) = Pc, limit = -- @ (b-- I). (2.3) 
t-coo 

The function ~i satisfies the equation 

fe 0q 0~1 (2 .4 )  
A~ + D 0~ 0~ vv~o 

and the condition on the boundary ~l(X0) = O. 

The function ~l can be represented in the form ~1 = r i) + ~11(xi, xj, Xk) , where 
the function ~10(xi), with allowance for conditions (2.3) and the condition on the boundary, 
has the form 

P�9 fc I fl 
(xd~ + ~4I--2' ~1o = ,bl exp L-- -D- cl 

b 1 = ~' ( 2 . 5 )  

 ,0_0 p ( 
-D- 

w h i l e  t h e  f u n c t i o n  ~11 s a t i s f i e s  n o n h o m o g e n e o u s  e q u a t i o n  ( 2 . 4 )  a n d ,  w i t h  a l l o w a n c e  f o r  t h e  
l i m i t a t i o n s  on t h e  g e o m e t r y  o f  t h e  p a r t i c l e s  i n t r o d u c e d  a b o v e ,  d o e s  n o t  c o n t r i b u t e  t o  t h e  
t o t a l  p a r t i c l e  f l o w  t o  t h e  c o l l e c t o r  s u r f a c e .  

A n a l y s i s  o f  t h e  a s y m p t o t e  o f  t h e  e x p r e s s i o n  f o r  ~1 w i t h  r § co shows t h a t  t h e  p a r a m e t e r  
o f  t h e  e x p a n s i o n  a (2)  = P e .  

The e q u a t i o n  s a t i s f i e d  b y  t h e  f u n c t i o n  r  h a s  t h e  f o r m  

{+ [ ]} ( t 0 t 4 0)~(2) 3. [ (Fp) pIvp exp _ + p ( t _ 9 )  . ~ o - 7 0 - 7 - ~ _ / ~  = - - T ~  F + T c  j 
The asymptotic expression for the function 6 (2) with D § 0 has the form (2.6) 

~(~") -~  - - ( t / 2 )? (F i )  In p. 

The presence of the logarithmic term in (2.6) changes the power nature of the functions 
~n(Pe) to a logarithmic character and leads to the following definition of the parameter of 
the expansion ~2: 

a~ = Pe~ Pe. 

Function ~2 again satisfies Eq. (2.1) with boundary conditions: 

I 
~z (Xo) = 0, l im~2 2 ? (Fi). 

7'-->oo 
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Using Eqs. (2.2), (2.5), and (2.7), we can write relations which determine the dimen- 
sionless flow of particles to a moving collector: 

(Fi) ? exp [----~-c 1 (x ) ]  y (Fi) Ale exp (-- _~_ Qs ) 
~.2 = 2.7) 

s~=s~0 ,§ (,~,) e~( ~)§ ~ ,~,~ex~(~T) ~ ~ ~176 

where Sh0 is the Sherwood number for the particle flow to a stationary collector. 

3. Example of Calculations and Analysis of Results. As an example we will present the 
expression for the Sherwood number calculated for an evaporating particle having the form 
of an oblate spheroid and moving normally with respect to the major semiaxis: 

s~ = s~0, § ~ o,~ a,ot~o~ ~ex'~'~ el)~ § 

X r~/2--aretg~ ~ D [ _  fe _ - - ~  . . . .  ' ( 3 .1 )  

l "5- l ~ ] j  

fc 
c 1 ~ - - c 1 8  2f c exp [-D-(Cloo -- cls) ] 

[-~ 1 
Here ,  o i s  t h e  " r a d i a l "  c o o r d i n a t e  of  the  s p h e r o i d ,  c o n n e c t e d  wi th  C a r t e s i a n  c o o r d i n a t e s  

by the  r e l a t i o n s :  

x = a l / t  + o 2 1 / t -  ~ o ~ . ~ , y = a  = 1/t  + . ' ~ 1 / 1 -  ~ m  ~. 
Z ~ aCYT, 

where  0 ~ q 0 ~ 2 ~ ,  - - i ~ 1 ,  o ~ 0 ,  ~ = ~ 0  c o r r e s p o n d s  to  the  s u r f a c e  of  the  s p h e r o i d .  F i g u r e  
1 shows r e s u l t s  of  c a l c u l a t i o n  of  the  Sherwood number in  r e l a t i o n  t o  the  r e l a t i v e  m o i s t u r e  
content performed by Eq. (3. I). The calculation was performed for ice crystals with an aspect 
ratio c = 0.03 falling in a gravitational field. Curves I and 2 correspond to a crystal with 
the major semiaxis size a = 15 and IU ~m. The ambient temperature Too =--I0~ the radius of 
the small particles R = 10 -2 ~m, and pressure in the vapor--gas mixture away from the crystal 
p = 9.8"104 N/m 2. 

It is evident from Fig. I that the flow of particles to the surface of an evaporating 
crystal exceeds the magnitude of the particle flow to the surface of a crystal not undergoing 
a phase transition. 

A similar conclusion was obtained experimentally in [10] for an evaporating drop. This 
result, at first unexpected, can be explained by the action of the thermophoretic force di- 
rected toward the crystal surface during its evaporation. 
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Figure 2 shows the dependence of the Sherwood number on the dimensions of the aerosol 
particles. The calculations were performed for an evaporating (relative moisture content 
75%) ice crystal with a major semiaxis e = 9 Mm falling in a gravitational field. Curves I 
and 2 correspond to the temperature T~ = --5 and --I0~ while curve 3 corresponds to a rela- 
tive moisture content of 100% (T~ = --5~ 

The results of the calculations show that the effect of thermal-diffusive electrophoretic 
forces caused by evaporation from the surface of a collector on the capture of aerosol particles 

depends significantly on the dimensions of the particles. 

The effect of thermal-diffusive electrophoretic forces on the capture of aerosol par- 
ticles with a radius R < 5"10 -3 Mm can be ignored even in the case of a low relative moisture 

content (relative humidity). 

At the same time, evaporation from the surface of a collector may significantly increase 
the efficiency of capture of aerosol particles with a radius R > 10 -2 ~m. 
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